A Fluid Stability

In this section, we provide a detailed discussion of the stability of
our fluid simulation model in both the full and reduced spaces.

A.1 Full Space

Our discretization of the fluid equations in §5 is stable, meaning
that the discrete versions of the partial differential equation do not
inherently gain energy. To see why, let us consider the advec-
tion, diffusion, and projection steps separately. Energy is given by
E(u) = %||u||%,<g) and its time derivative is £ = u? V(g)u. Not-
ing that we use oriented fluxes in (6), it is easy to see that the advec-
tion matrix A ®- f is antisymmetric. Substituting for u according
to (8), we can see that the advection step exactly conserves energy.

E=u"(A®:flu=0 (A1)

The graph Laplacian A has only positive eigenvalues, so substitut-
ing (9) for u gives us

E= uT( - pV_l(g)A)u <0. (A2)

Finally, in the projection step, we minimize the energy difference
between the current velocities and the velocities corresponding to
new, divergence free fluxes. Let u be the velocities before pro-
jection, ' = V'(g)(P ®2 g)f be the divergence-free velocities
after projection, and u  be their difference: u = u’ 4 u,. (Thisis
known as the Helmholtz-Hodge decomposition [Stam 1999].) We
use || - |[v(g) in our objective function (10), meaning u’ and u
are orthogonal in energy space. So the triangle inequality is tight:
E(u) = E(u') + E(u.), which implies E(u) > E(u’), ensuring
that the projection never gains energy.

Note that this does not mean that the method is unconditionally sta-
ble independent of the time integration method and time step cho-
sen. However, we now use the above arguments to show that for
our choice of integrator, the reduced simulation is in fact uncondi-
tionally stable.

A.2 Reduced Space

The definition of energy in the full space E(u) = ||u| |3,<g> leads
naturally to a definition of reduced energy E(ﬁ) = HﬁH%(g), and
all our stability arguments from §A.1 carry over directly with one
exception: advection. In order to ensure energy-preserving advec-
tion, we must be careful in basis selection. Constructing the re-
duced equivalent of Eq. A.1, we see that the derivative in energy
due to reduced-space advection is given by

B=a"B7 ((A ®2 Bj) ®2 f) B.i. (A3)

If we set B, = By, then "B} = (B.u)”, and since the full

space matrix (A ®2B ) ®2 f itselfis antisymmetric, we once again
are in possession of an energy-conserving discretization. Com-
bined with analytic integration using matrix exponentiation, this
basis choice results in an unconditionally stable system. To achieve
B. = B, we first compute the momentum and velocity bases in-
dependently. We then concatenate them and re-orthogonalize the
result. We use this combined basis for both B,, and B,, in our fluid
simulations, which guarantees that the simulations will preserve en-

ergy.
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Figure B.1: Geometric layout of the illumination variables on two
triangles.

B Radiosity Derivation

They key step in the model reduction of radiosity using our tech-
nique is the reduction of the form factor equation (Eq. 15). To
model reduce this equation, we follow the process described in §4:
we represent it as a collection of tensors, composed using tensor
products, matrix inversion, and matrix roots. In this section we pro-
vide a detailed derivation of the tensors and sequence of operations
shown in Table 2. We arrive at this sequence of operations by de-
composing the radiosity equation (Eq. 14), so we will be describing
the tensors and operations in Table 2 from bottom to top.

To evaluate the radiosity equation, we need to compute the matrix
I—pF. Asdescribed in §8.1, we begin by unrolling F € R™*™ into
avectorp € R™ by re-indexing: pr, = F; j, where k = ni+j and
n is the number of faces in the mesh. We also need the transpose
index kT = nj 4 4, so that p,» = F;;. The tensor form of the
radiosity equation (Eq. 14) is then:

b=(I1-E®:p)e, (B.1)

where E is the 3rd-order tensor that transforms the unrolled form
factor vector p back into the form factor matrix F and left-
multiplies F by the face albedos p.

Our task is now to compute p, the vector of form factors. At this
stage, we choose to separate the factor of area in the denominator
of Eq. 15, making this stage a division of area-free form factors,
denoted by d, by the square roots of squared areas, where we denote
squared areas by a:

pi = din/V/a. (B2)

We implement this division using a tensor P:

p=(P®a) 2d. (B.3)

a is a simple function of the normals n: ay = n; - n,;. (Recall that
n; is the normal of the ith face, making it a 3-vector.) We define a
tensor N to implement these dot products:

a=N®i.2n. (B.4)

Returning to d, the next factor we separate is visibility, which gives
us the expression
di, = e Vis(i, 7), (B.5)

where c are visibility-free form factors. We define the visibility
vector v such that v, = Vis(s, j). We treat v(g) as a function of
geometry directly, and reduce the computation of Vis(4, j) using a
non-Galerkin method which we describe in more detail in §8.3.



Now we can write ¢ as an element-wise product of two vectors:
1
ek = —hghyr, (B.6)
™
where

n; - (Cj — Ci)
llei — ¢;]?

hi = B.7)

We call h half form-factors, and define a tensor C implementing
Eq. B.6:
c=C®i. 2h. (B.8)

Next, we rewrite both parts of the quotient in Eq. B.7:

Sk

hy = =, (B.9)
Tk
where
re = [lei — ¢4 (B.10)
and
Sk = 1n; - (Cj — Ci). (B.ll)

r is a vector of squared distances between face centroids. s is a
vector of scaled cosines: sy, is the cosine of the angle between n;
and c; — c;, multiplied by face area and the distance between face
centroids. We use a tensor H to construct a diagonal matrix, with r
as its entries, which we invert to find h:

h=(H®r)'s. (B.12)

While s is polynomial in g, and so it would be possible to compute
it directly as a from g by contracting a single tensor, we can reduce
the polynomial degree of this system from 3 to 2 (and the maximum
tensor order from 4 to 3) by decomposing s one step further. Note
that Eq. B.11 is bilinear in n and c, the latter of which is linear in
g. Therefore, we can define a tensor S such that

s=S® n®:g. (B.13)

This leaves us with only n to compute. The normals are given by

n; = (gi,2 — 8i,0) X (8,1 — 8i,0); (B.14)

where g; ¢ is the (th vertex of face ¢ and X is the vector cross prod-
uct. This expression is a low-degree (quadratic, in fact) polynomial
in geometry, and so we can complete the decomposition with a final
tensor N such that

n=N®®i. 28 (B.15)

With the tensors defined above, we can now compute radiosity as
described in Table 2 given only the scene geometry g and the inci-
dent illumination e.



